■Focus Gold 4th Edition 数学 I +A

本書には、次のところに誤りがございます。深くお詫び申し上げますと共に、下記のように訂正の上、ご使用 いただきますようお願いいたします。

(株) 新興出版社啓林館編集部

<本体>

ページ	箇所	原 文	訂正文
p.240 例題 141	解答 13 行目	$0 < \theta < \frac{\pi}{2}$	$0^{\circ} < \theta < 90^{\circ}$
p.459 例題 252	(2)の解答 3 行目	$7n + 6 \ge 3n + 1$	$7n \geq 3n + 1$

また、454ページのコラム「素数は無限に存在する」につきましては、下記のように、証明をより厳密なものに変更いたします。

ページ	箇所	訂正文	
p.454	8~16 行目	(証明の内容を下記のように変更)	
コラム			
		素数が有限の n 個しか存在しないと仮定し、その最大の素数を p とする。	
		また,Nをすべての素数の積に1を加えたもの,	
		すなわち、 $N=(2\times3\times5\times7\times11\times\cdots\cdots\times p)+1$ とすると、	
		$2 \times 3 \times 5 \times 7 \times 11 \times \cdots \times p$ は最小の素数 2 から最大の素数 p のどの素数で割っても割り	
		切れるので、Nはどの素数で割っても1余る数である。	
		そこで,次の(i), (ii) が考えられる。	
		(i) N自体が素数である。	
		(ii) Nは素数でなく、pより大きな素数を因数にもつ。	
		(例) p=13のとき,	
		N=2×3×5×7×11×13+1=30031=59×509 であり,	
		Nは素数でなく、13より大きい素数59,509を因数にもつ。	
		しかし、 (i) 、 (i) のいずれでも、 p より大きい素数が必ず存在することとなる。	
		したがって、素数は有限個であるという仮定に矛盾するので、素数は無限に存在する。	